Sto vedendo Codice Genesi, molto mistico-religioso post nucleare e il titolino è di conseguenza. Siamo entrati nella buca, adesso risaliamo. C’è un problema: la biomeccanica non ci aiuta.
Che differenza c’è fra queste due configurazioni meccaniche? Il pistone è vincolato in maniera tale che la traiettoria di qualsiasi elemento del sistema è completamente determinata: girate l’ingranaggio, il pistone si muove, muovete il pistone, l’ingranaggio si muove. Per quanto possa essere complicato matematicamente, alla fine possiamo fare una di quelle simulazioni che tanto fanno sbavare i nerd dei pesi.
Lo scheletro che fa squat non è vincolato allo stesso modo: ok, il femore non esce dall’anca, uno sbilanciamento in avanti provoca dentate colossali, i piedi non sprofondano nel pavimento. Ma se lo scheletro impazzisce e vuole spostare il peso orizzontalmente… può farlo.
La traiettoria del bilanciere è così influenzata dai vincoli meccanici dei “pezzi” che devono essere tenuti insieme, dalle forze che i muscoli possono produrre, dalle compressioni dentro le articolazioni che non possono eccedere dei limiti ma essenzialmente da ciò che è dentro la testaccia marcia di chi esegue lo squat.
Il problema degli studi su questi movimenti complessi è che, secondo me, cercano di rendere l’omino a sinistra come il pistone a destra. E si impantanano. Moltissimi aspetti di qualsiasi movimento umano sono ancora ignoti, lo squat non fa eccezione.
In questo pezzo vi proporrò un modello della risalita dello squat sulla base di ciò che ho studiato, sperimentato, simulato, osservato. Come sempre, è una possibilità di spiegazione. Io dico che non ho pisciato troppo fuori dal vaso, al limite sulla ciambella.
L’articolo è suddiviso in ben tre parti perché non avevo voglia di dividerlo: una è un richiamino di Fisica, lo so che preferireste essere frustati con il filo spinato, una per la comprensione di cosa accade, lunga e pallosa e non voglio che passiate da “questa è la spiegazione” a “dovete fare così per forza”, l’altra è corta e dovrebbe dare delle regole del pollice, le thumbs rules tanto care agli anglosassoni. Vedrete che le regole sono sempre le stesse, poche, banali o quasi stupide.
Potete saltare alle regolette finali, come quelli che si fidano solo del navigatore come se fosse la voce di Dio e non guardano nemmeno se sono sull’autostrada o in mezzo ad un campo.
Il gioco delle coppie
Una forza che fa ruotare un oggetto intorno ad un punto genera sull’oggetto quella che si chiama coppia o momento meccanico. Per essere meno precisi ma più chiari, una coppia è la capacità di una forza di far ruotare un corpo.
E’ chiaro che a noi le coppie rompono le tasche ma servono: i movimenti che compiamo sono dovuti alla rotazione delle ossa, pertanto i muscoli generano delle forze che a loro volta sulla base di come sono applicate, tramite i tendini, alle ossa, generano delle coppie. Per questo motivo è possibile sostituire il termine “forza” con il termine “coppia” e le frecce dritte con le frecce rotanti anche se, di fatto, stiamo parlando di pere invece che di mele.
Ok, il disegno sembra complicato, cerchiamo di spiegarlo piano piano, come Paolino ha fatto con me (ma… Paolino sono io… che sta succedendo?). Per semplicità, invece di usare le velocità angolari che sono poco intuitive, ho preferito considerare la velocità verticale della testa dello scheletro perché è qualcosa di “visivamente” percepibile.
In alto, da sinistra verso destra:
All’istante t0 (Dio come odio questa notazione con i pedici che ci vuole un casino di tempo a scriverla…) lo scheletro è al parallelo e sta fermo, ciò significa che la schiena non flette, l’angolo phi (anche questa mania di usare le lettere greche…) non perciò non varia, la velocità verticale della testa è nulla. Perché ciò accada è necessario che la coppia generata dal bilanciere e dal peso del tronco, che indurrebbe bacino e spina a ruotare in senso orario, sia perfettamente equiparata da quella applicata alle anche: i glutei e i femorali “tirano” indietro il bacino e tutto ciò che c’è sopra.
Adesso guardate i grafici sottostanti che indicano proprio ciò che ho scritto.
All’istante t1 per un qualsiasi motivo lo scheletro diminuisce la coppia al bacino, notate come la freccia rotante abbia spessore inferiore. Poiché la coppia del carico del bilanciere e del tronco non è più equilibrata, il bacino e tutto quello che c’è sopra ruoteranno verso il basso, l’angolo phi inizierà a diminuire e la velocità verticale della testa inizierà ad aumentare progressivamente. Poiché considero positive le velocità verso l’alto, in questo caso la velocità è negativa perché va verso il basso.
Nel grafico della coppia la diminuzione della coppia all’anca è indicata dal gradino verso il basso: nella realtà questi gradini non esistono e tutto è molto più smussato, ma per evidenziare i concetti è necessaro fare così. Notate come la coppia scenda ma si mantenga costante, la velocità e l’angolo diminuiscono continuamente.
La morale è che quando la schiena ruota in avanti la coppia all’anca è minore di quanto sia necessario per tenerla ferma.
All’istante t2 lo scheletro vuole frenare la schienata, applica perciò più coppia di quanto serva a tenere la schiena ferma, il gradino di coppia verso l’alto. Adesso attenti: lo scheletro dà coppia e il tronco inizia a frenare, cioè la velocità comincia a crescere, diventando sempre meno negativa. Il problema è che la schiena non è che smette di andare giù, cioè l’angolo dell’anca continua a diminuire perché se è vero che lo scheletro dà coppia all’anca, è anche vero che tutto il tronco si stava muovendo ed è necessario del tempo per fermarlo.
All’istante t3 la velocità verticale della testa è tornata a zero, cioè il tronco non ruota più verso il basso e l’angolo dell’anca è al suo minimo.
La morale stavolta è che se applico una coppia per far smettere di ruotare un corpo non è che quello si ferma immediatamente: è necessario un tempo che dipende da quanta coppia fornisco e quanto velocemente il corpo stava ruotando, più coppia fornisco e in meno tempo il corpo si ferma, ma un certo tempo è necessario.
Poiché lo scheletro non smette di fornire coppia all’anca tramite glutei e femorali (ma se è uno scheletro dove li avrà i glutei e i femorali…), il movimento si inverte: la coppia fornita è superiore a quella necessaria per tenere fermo il tronco, all’istante t4 la velocità verticale della testa è aumentata così come l’angolo dell’anca: il tronco sta ruotando in senso antiorario. Analogamente all’istante t5.
L’ultima morale è che affinchè la schiena ruoti indietro è necessario applicare all’anca più coppia di quanto sia necessario per tenerla ferma, più ne date e più velocemente il tronco ruoterà.
Ok, la caratteristica di tutti i disegnini in alto è che nella rotazione del tronco l’anca è ferma mentre è la testa che ruota, in una situazione un po’ ridicola perché nessuno sano di mente farebbe una cosa del genere (oppure no… che dite?).
Adesso guardate i disegnini in basso: anche in questo caso il tronco ruota, ma è l’anca che si sposta mentre la testa rimane ferma. Passatemi, senza farmelo dimostrare, che la testa è ferma orizzontalmente anche se verticalmente si muove.
In questo caso ciò che accade è che lo spostamento delle ginocchia indietro muove conseguentemente il bacino e se la testa non si sposta orizzontalmente per forza di cose la schiena deve flettersi: provate, a meno che non vogliate staccare il bacino dalla schiena questo è ciò che accade.
Nei disegni in basso la schiena in pratica ruota intorno alla testa invece che all’anca, ma la descrizione dei comportamenti è sempre la stessa!
Ma se la schiena flette in avanti ciò significa che la coppia all’anca è inferiore a quella necessaria per tenerla ferma a quell’inclinazione! In altre parole tutto il ragionamento fatto precedentemente si applica allo stesso modo: quando c’è una “scodata” nello squat e la schiena si inclina l’atleta sta dando meno coppia alle anche, pertanto sta “faticando” di meno!
Quando poi vorrà far ruotare la schiena indietro dovrà invece dare più coppia di quanto serva a tenerla ferma. Nella serie di disegni in basso l’effetto di questo è visibile all’istante t4 perché la schiena inizia a tirarsi su, ma l’atleta ha dovuto dare coppia alle anche all’istante t2 cioè prima.
Ciò che accade in una scodata in cui la schiena si inclina è questo:
In una “scodata” la coppia all’anca prima diminuisce e poi aumenta. Per quanto vi possa sembrare uno spreco di energie mentali, memorizzate questa sequenza e principalmente il perché.
- Le ginocchia sono sparate indietro, l’atleta genera meno coppia alle anche di quanto serva per tenere la schiena ad inclinazione costante. Meno coppia genera, più la schiena ruoterà in avanti.
- La schiena ruota in avanti perché il bacino si sposta indietro.
- L’atleta vuole adesso “tirare su” la schiena e genera coppia all’anca, più ne genera e più velocemente la schiena ruoterà indietro.
- Per quanto generi coppia, la schiena non smette di ruotare in avanti fin da subito proprio perché ha una sua velocità: prima si deve fermare, poi inizia a ruotare nel verso opposto.
Il bacino e la schiena
Quando si parla di squat e di stacco c’è sempre un po’ di confusione fra bacino e spina dorsale, i disegnini spesso confondono.
La spina non ha un ruolo attivo nello squat se non quello di mantenersi rigida, di non perdere la sua forma. I muscoli paravertebrali non hanno però una funzione motrice nel movimento, nel senso che non sono loro che determinano gli spostamenti: questi sono causati dalla rotazione del bacino a cui la spina dorsale è collegata.
A sinistra l’istante t3 dei disegni precedenti, il momento in cui c’è l’incremento di coppia all’anca. La spina è formata di vertebre e non è rigida, perché mantenga la sua forma è necessario che queste non ruotino in avanti: i muscoli paravertebrali si contraggono e impediscono che questo nefasto evento accada e all’istante t4 bacino e spina hanno ruotato entrambi indietro.
E’ così importante comprendere come ciò che accade all’anca si riflette su ciò che accade alla spina: più coppia i femorali e i glutei generano all’anca inducendo il bacino a ruotare indietro, più coppia i paravertebrali devono generare per impedire che la spina perda la sua forma.
A destra ciò che succede se i paravertebrali non generano sufficiente coppia: il bacino ruota indietro, le vertebre in avanti e la spina dell’atleta perde la sua curvatura. La spina non ruota indietro come dovrebbe ma più che altro l’intera struttura spinale è soggetta a forza asimmetriche estremamente dannose.
I carichi sulla spina non sono così dovuti solamente a cosa c’è “sopra”, ma essenzialmente da tutto il comportamento dinamico delle forze in gioco al bacino.
Questo è il motivo per cui dei banalissimi good morning con il bilanciere scarico ma eseguiti alla velocità della luce possono essere più dannosi di uno squat pesante: ruotare velocemente il tronco implica dare tantissima coppia alle anche e perciò i paravertebrali devono generare tantissima coppia per non far ruotare le vertebre in avanti. Se chi esegue “ci va rilassato” perché il carico è basso… è un attimo perdere la curvatura spinale e pinzarsi un disco intervertebrale.
Segnalibri